Z(6th Sm.)-Mathematics-G/SEC-B-2/CBCS

2023

MATHEMATICS — GENERAL

Paper : SEC-B-2

(Boolean Algebra)

Full Marks : 80

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Marks : 20)

1. Choose the correct option and justify your answer :

 $(1+1) \times 10$

- (a) Let $S = \{1,2,3\}$ and consider the relation $R = \{(1,1), (3,3)\}$ on S. Then R is
 - (i) symmetric and but not anti-symmetric
 - (ii) anti-symmetric and but not symmetric
 - (iii) symmetric as well as anti-symmetric
 - (iv) neither symmetric nor anti-symmetric.
- (b) Consider the poset (N, \leq) . This poset has
 - (i) minimal element but no maximal element
 - (ii) maximal element but no minimal element
 - (iii) both minimal element and maximal element
 - (iv) neither minimal element nor maximal element.
- (c) It is false that from a Hasse diagram of some poset
 - (i) minimal element(s) can be determined
 - (ii) maximal element(s) can be determined

(i)

- (iii) both maximum and minimum element(s) can be determined
- (iv) maximum and minimum element(s) can never be determined.

(d) Let (B, \land, \lor) be a lattice and $a, b, c \in B$. Then dual of $a \land (b \lor c) = (a \land b) \lor (a \land c)$ is

$$a \wedge (b \vee c) = (a \wedge b) \wedge (a \wedge c)$$
 (ii) $a \wedge (b \wedge c) = (a \wedge b) \vee (a \wedge c)$

- (iii) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ (iv) $a \lor (b \lor c) = (a \land b) \lor (a \lor c)$.
- (e) A poset S is lattice if every pair of elements of its has
 - (i) greatest lower bound in S (ii) greatest lower bound and lowest upper bound in S
 - (iii) greatest and lowest element in S (iv) maximal and minimal elements in S.

Please Turn Over

1.11

Z(6th Sm.)-M	Aathematics-G/SEC-B-2/CBCS	(2)		
(f)	Let N be ordered by divisibility. Which	subset of \mathbb{N} is not linear (totally) order		
	(i) {24, 2, 4}	(ii) N		
	(iii) {2, 8, 32, 4}	(iv) $\{7\}$.		
(g)	In the Boolean Algebra which one of the following is not true?			
	(i) $a + a = a$	(ii) $a + 1 = 0$		
	(iii) $a.(a+b) = a$	(iv) $(a+b)' = a'.b'.$		
(h)	The complement of $(x'+y)(x'+y')$ is			
	(i) $(x + y)(x + y')$	(ii) x		
	(iii) $(x' + y')y'$	(iv) None of these.		
(i)	Let $(B, +, \cdot, \prime)$ be a Boolean Algebra	and $a, b \in B$. Then $a + (a' \cdot b) =$		
	(i) $a + b$	(ii) <i>a</i> + <i>b</i> ′		
	(iii) $a' + b$	(iv) $a \cdot b$.		
(j)	•	z•		
	Boolean expression corresponding to the	e above circuit is written as		
	(i) xyz	(ii) <i>xy</i> ′ <i>z</i>		
	(iii) $x + y + z$	(iv) $x + y' + z$.		

Group - B

(Marks : 60)

Answer any six questions.

- 2. (a) Define maximal and minimal element in a poset.
 - (b) Draw the Hasse diagram of the poset (S, ≤), where S = {4, 12, 24, 48, 72} and a ≤ b means a divides b for all a, b ∈ S. Find the greatest element (if exists) and least element (if exists) in (S, ≤).
 - (c) Let S = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} and consider the poset (S, ≤), where a ≤ b iff a divides b for all a, b ∈ S. Find the upper bound(s) and least upper bound of the set {6, 15} in (S, ≤).
- **3.** (a) Define distributive lattice.
 - (b) Let S be the set of all positive divisors of 20 and a partial order relation \leq is defined on S by $a \leq b$ iff a divides b. Examine whether (S, \leq) is a distributive lattice.
 - (c) Let (L, \land, \lor) be a distributive lattice and $a, b, c \in L$.

Prove that $a \wedge c = b \wedge c$ and $a \vee c = b \vee c \implies b = a$.

2+3+5

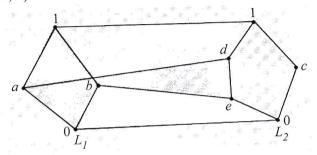
Z(6th Sm.)-Mathematics-G/SEC-B-2/CBCS

(1+3)+(2+2)+2

- 4. (a) Define Complete lattice. Prove that dual of a complete lattice is complete.
 - (b) Show that (D_{30}, \leq) is a lattice. Find all sublattices of (D_{30}, \leq) .
 - (c) Prove that every finite lattice is bounded.
- 5. (a) Prove that $N \times N$ is moduler lattice, where N is the chain of naturals under usual \leq .

(3)

- (b) Define homomorphism between two lattices.
- (c) Let us consider the mapping $\psi: (L_1, \wedge, \vee) \to (L_2, \wedge, \vee)$, where $L_1 = \{0, a, b, 1\}$ and $L_2 = \{0, c, d, e, 1\}$ be two lattices and ψ be defined as



Show that ψ is homomorphism.

6. (a) From the following truth table write F in DNF and then simplify using Karnaugh Map :

x	у	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(b) Using Karnaugh Map find a minimal sum for E = y't' + y'z't + x'y'zt + yzt'.

(2+3)+5

3+2+5

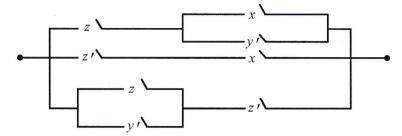
Please Turn Over

t.a.

Z(6th Sm.)-Mathematics-G/SEC-B-2/CBCS

(4)

7. (a) Find a simpler equivalent circuit for the following :



(b) Find a switching circuit which realizes the switching function f given by the following switching table :

x	y	z	f(x,y,z)
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

- 8. (a) A committee consisting of three members approves any proposal by majority vote. Each member can approve a proposal by pressing a button attached to their seats. Design as simple a circuit as you can which will allow current to pass when and only when a proposal is approved.
 - (b) Construct a truth table for the Boolean expression : xy' + y(x' + z) + z.
- 9. (a) Prove that the following three expressions are equal :
 - (i) (a+b)(a'+c)(b+c)
 - (ii) ac + a'b + bc
 - (iii) (a+b)(a'+c).

(b) What is Boolean polynomial? Give an example of Boolean polynomial. 6+(2+2)

- **10.** (a) Let (S, \leq) be a poset and $a, b \in S$. Prove that $a \lor b = b$ iff $a \land b = a$.
 - (b) Let (L, \leq) be a lattice and $a, b \in L$. Show that $a \land (a \lor b) = a$.
 - (c) Give one example of a poset, where there are more than one minimal elements but no smallest element. 4+3+3

5+5

5+5

1.1