2021

MATHEMATICS — **GENERAL**

Paper: GE/CC-1 Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১নং প্রশ্ন এবং প্রতিটি ইউনিট থেকে কমপক্ষে একটি করে প্রশ্ন নিয়ে মোট *নয়টি* প্রশ্নের উত্তর দাও।

31

			, , , , , , , , , , , , , , , , , , , ,
নিশ্ব	লিখিত প্রশ্নগুলির মধ্যে সঠিক উত্তরটি নির্বাচন করো যথা	যথ যুতি	ক্সহ ঃ ২×১০
(ক)	n যদি ক্ষুদ্রতম ধনাত্মক পূর্ণসংখ্যা হয় যাতে $\left(rac{1+i}{1-i} ight)^n=$	=1, তা	হলে <i>n-</i> এর মান হবে
	(অ) 2	(আ)	3
	₹) 4	(ঈ)	কোনোর্টিই নয়।
(খ)	বহুপদী $(3x^2 + 4x - 11)$ -কে $(x - 1)$ দ্বারা ভাগ করা	হলে, দ	অবশিষ্টাংশ হবে
	(অ) -4	(আ)	-3
	(₹) -2	(ঈ)	কোনোটিই নয়।
(গ)	যদি সমীকরণের সিস্টেম $ax + y = 3$, $x + 2y = 3$, 3 হবে	x + 4y	y = 7 সামঞ্জস্যপূর্ণ (consistent) হয়, তাহলে <i>a-</i> এর মান
	(অ) 2	(আ)	1
	(₹) -2	(ঈ)	কোনোটিই নয়।
(ঘ)	সমীকরণ $9x^2 - 24xy + 16y^2 = 0$ প্রতিনিধিত্ব করে	দুটি	
	(অ) coincident সরলরেখা	(আ)	লম্ব সরলরেখা
	(ই) উভয় (অ) এবং (আ)	(₹)	কোনোর্টিই নয়।
(&)	গোলকের ব্যাসার্থ $3(x^2+y^2+z^2)+2x-4y-2z-$	1 = 0	হল
	(অ) 1 ইউনিট	(আ)	2 ইউনিট
	(ই) 4 ইউনিট	(ঈ)	কোনোটিই নয়।

(চ)
$$\lim_{x \to \pi} \frac{\sin x}{\pi - x}$$
 -এর মান

(অ) 1

(আ) 2

(₹) π

(ঈ) কোনোটিই নয়।

(ছ)
$$f(x) = \frac{1}{\sqrt{|x|-x}}$$
 এই অপেক্ষকটির সংজ্ঞায়িত হওয়ার অঞ্চলটি হল

(আ) $(0, \infty)$

(আ) (-∞, 0)

 $(\overline{2})$ $(-\infty, 0]$

 $(\overline{\mathfrak{R}})$ $(-\infty, \infty)$

(জ)
$$\phi\left(x,y,\frac{dy}{dx},\frac{d^3y}{dx^3}\right)=0$$
 -এর সম্পূর্ণ আদিমতে arbitrary ধ্রুবকের সংখ্যা

(অ) 1

(আ) 2

(氢) 3

(**ঈ**) 4

(ঝ)
$$x^2 + 6xy + 9y^2 - 5x - 15y + 6 = 0$$
 সমীকরণটি প্রকাশ করে

(অ) একটি বৃত্ত

(আ) একটি অধিবৃত্ত

(ই) সরলরেখাযুগ্ম

(ঈ) একটি উপবৃত্ত।

(এঃ) y-অক্ষের সমান্তরাল অক্ষ বিশিষ্ট সমস্ত অধিবৃত্তের অবকল সমীকরণ হল

(অ) $y_1 = 0$

(আ) $y_2 = 0$

 $(\mathbf{\bar{z}}) \ y_3 = 0$

 $(\overline{\mathfrak{F}}) \quad y_4 = 0$

Unit-I

(Algebra - I)

২। (Φ) $(1+i)^{2/3}$ -এর মানসমূহ নির্ণয় করো।

(খ) $x^4+2x^2+3x-4=0$ সমীকরণটির অবাস্তব বীজগুলির সংখ্যা কত, তা নির্ণয় করো।

৩+২

৩। ম্যাট্রিঝ পদ্ধতিতে সমাধান করো z + y + 2z = 4, 2x - y + 3z = 9, 3x - y - z = 2

Č

8। Cardan পদ্ধতিতে সমাধান করো $x^3 - 6x - 9 = 0$

Č

Œ

Œ

Unit-II

(Differential Calculus - I)

৫। নিম্নলিখিতটি সম্ভত (continuous) কি না তা পরীক্ষা করো (0,0) বিন্দুতে :

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

৬। (ক) লিব্নিজ উপপাদ্যটি বিবৃত করো।

খে) যদি
$$y=\cos(m\sin^{-1}x)$$
 হয়, তবে প্রমাণ করো যে, $\left(1-x^2\right)y_{n+2}-(2n+1)xy_{n+1}+\left(m^2-n^2\right)y_n=0$ ২+৩

৭। (ক) $f(x) = \frac{x^2 + 1 - x}{x^2 - 5x + 6}$ অপেক্ষকের ক্ষেত্রটি (domain) বের করো।

(খ)
$$f(x) = \log\left(x + \sqrt{x^2 + 1}\right)$$
 অপেক্ষকটি বিজোড় না কি জোড় তা যুক্তি দিয়ে পরীক্ষা করো। ৩+২

৮। যদি
$$x^{\sin y} + y^{\sin x} = 1$$
, $\frac{dy}{dx}$ নির্ণয় করো।

৯। $y^2=x$ বক্ররেখার যে-কোনো (যদি থাকে) উপসর্গগুলি (asymptotes) নির্ণয় করো।

Unit - III

(Differential Equation – I)

১০। (ক) $\left(\frac{d^2y}{dx^2}\right)^3 + x^2\left(\frac{dy}{dx}\right)^4 = 4$ — এই অবকলন সমীকরণটির ক্রম ও মাত্রা নির্ণয় করো।

(খ) সমাধান করো ঃ
$$x \, dy - y \, dx = \cos\left(\frac{1}{x}\right) dx$$

১১।
$$p = \log(px - y)$$
-এর সাধারণ এবং একক (singular) সমাধান বের করো। $\left(p \equiv \frac{dy}{dx}\right)$ ২+৩

১২। সমাধান করো
$$z = \frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 12e^{-3x}$$

Please Turn Over

(iii) 4

Unit-IV

(Coordinate Geometry)

- ১৪। যদি সমীকরণ $5x^2 6xy + y^2 = 0$ একটি জোড়া সরলরেখার প্রতিনিধিত্ব করে, তাহলে সরলরেখাদ্বয় এবং তাদের মধ্যবর্তী কোণটি নির্ণয় করো।
- ১৫। প্রমাণ করো যে অধিবৃত্ত $y^2=4ax$ সরলরেখা y=mx+c দ্বারা ছেদবিন্দুতে উৎপত্তিস্থলে যোগদানকারী সরলরেখার জোড়া সমকোণে থাকে যদি c+4am=0 হয়।
- ১৬। দেখাও যে সরলরেখা $\frac{l}{r} = A\cos\theta + B\sin\theta$ কণিক $\frac{l}{r} = 1 + e\cos\theta$ স্পর্ম করে যদি $(A-e)^2 + B^2 = 1$
- ১৭। $x^2 + 4xy + 4y^2 + 4x + y 15 = 0$ সমীকরণটি ক্যানোনিকাল (canonical form) আকারে পরিণত করো এবং কণিকের প্রকৃতি নির্ধারণ করো।

[English Version]

The figures in the margin indicate full marks.

Answer *question no.* 1 and *any nine* questions from the rest, taking at least *one* question from *each unit*.

1.	Choose the correct option from each of the following questions with proper justification:		
	(a) If <i>n</i> is the smallest positive integer so that $\left(\frac{1+i}{1-i}\right)$	n = 1, then value of <i>n</i> will be	
	(i) 2 (ii)	3	

(iv) none.

- (b) When the polynomial $(3x^2 + 4x 11)$ is divided by (x 1), the remainder will be
- (i) -4 (ii) -3 (iv) none.
- (c) If the system of equations ax + y = 3, x + 2y = 3, 3x + 4y = 7 is consistent, then the value of
 - *a* will be

 (i) 2 (ii) 1
 - (iii) 2 (iv) none.

- (d) The equation $9x^2 24xy + 16y^2 = 0$ represents two
 - (i) coincident straight lines
- (ii) perpendicular straight lines

(iii) both (i) and (ii)

- (iv) none.
- (e) The radius of the sphere $3(x^2 + y^2 + z^2) + 2x 4y 2z 1 = 0$ is
 - (i) 1 unit

(ii) 2 unit

(iii) 4 unit

(iv) none.

- (f) The value of $\lim_{x \to \pi} \frac{\sin x}{\pi x}$ is
 - (i) 1

(ii) 2

(iii) π

- (iv) none.
- (g) The domain of definition of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$ is
 - (i) $(0, \infty)$

(ii) $(-\infty, 0)$

(iii) $(-\infty, 0]$

- (iv) $(-\infty, \infty)$.
- (h) The number of arbitrary constants in the complete primitive of the differential equation

$$\phi\left(x, y, \frac{dy}{dx}, \frac{d^3y}{dx^3}\right) = 0 \text{ is}$$

(i) 1

(ii) 2

(iii) 3

- (iv) 4.
- (i) The equation $x^2 + 6xy + 9y^2 5x 15y + 6 = 0$ represents
 - (i) a circle

(ii) a parabola

(iii) pair of straight lines

- (iv) an ellipse.
- (j) The differential equations of all parabolas having their axes parallel to the y-axis is
 - (i) $y_1 = 0$

(ii) $y_2 = 0$

(iii) $y_3 = 0$

(iv) $y_4 = 0$.

(6)

Unit - I

(Algebra - I)

2. (a) Find all the values of $(1+i)^{2/3}$.

(b) Find the number of non-real roots of the equation $x^4 + 2x^2 + 3x - 4 = 0$.

3. Solve by matrix method x + y + 2z = 4, 2x - y + 3z = 9, 3x - y - z = 2.

4. Solve by Cardan's method $x^3 - 6x - 9 = 0$.

Unit - II

(Differential Calculus - I)

5. Check whether the following is continuous or not at (0, 0):

 $f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$

6. (a) State Leibnitz's theorem.

(b) If
$$y = \cos(m \sin^{-1}x)$$
, then prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$. 2+3

7. (a) Find the domain of the function $f(x) = \frac{x^2 + 1 - x}{x^2 - 5x + 6}$.

(b) Check with justification whether the function is odd or even :

$$f(x) = \log\left(x + \sqrt{x^2 + 1}\right).$$
 3+2

3+2

5

8. Find
$$\frac{dy}{dx}$$
, if $x^{\sin y} + y^{\sin x} = 1$

9. Find the asymptotes (if any) of the curve $y^2 = x$.

Unit - III

(Differential Equation - I)

10. (a) State the order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + x^2\left(\frac{dy}{dx}\right)^4 = 4$.

(b) Solve:
$$x dy - y dx = \cos\left(\frac{1}{x}\right) dx$$
. 2+3

11. Obtain general and singular solution of $p = \log(px - y)$. $\left(p = \frac{dy}{dx}\right)$

12. Solve:
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 12e^{-3x}$$
.

Unit - IV

(Coordinate Geometry)

- 13. Show that the two straight lines through the origin which make angles 45° with the straight line lx + my + n = 0 is given by $(l^2 m^2)(x^2 y^2) + 4lmxy = 0$.
- 14. If the equation $5x^2 6xy + y^2 = 0$ represents a pair of straight lines, then find the straight lines and the angle between them.
- 15. Prove that the pair of straight lines joining the origin to the points of intersection of the parabola $y^2 = 4ax$ by the straight line y = mx + c is at right angles if c + 4am = 0.
- 16. Show that the straight line $\frac{l}{r} = A\cos\theta + B\sin\theta$ touches the conic $\frac{l}{r} = 1 + e\cos\theta$ if $(A e)^2 + B^2 = 1$.
- 17. Reduce the equation $x^2 + 4xy + 4y^2 + 4x + y 15 = 0$ to the canonical form and determine the nature of the conic.