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2024

MATHEMATICS — MINOR
Paper : MN-2
(Basic Algebra)
Full Marks : 75

Candidates are required to give their answers in their own words
as far as practicable.
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[ English Version ]
The figures in the margin indicate full marks.

Throughout the question paper R denotes the set of real numbers.
Other symbols have their usual meanings.
Group - A
(Marks : 25)
1. Answer any two questions : 2Y4x2

(a) Find the cube roots of —1.

(b) Apply Descartes’ rule of signs to find the nature of the roots of the equation x8 — 1 = 0.

(c) Show that (n + 1)" > 2".n!, where n is any positive integer.

(d) If the roots of the equation x3 + px% + gx + r = 0 are in A.P., then show that p? > 3q.

2. Answer any four questions : 5x4
- —ib 2ab
(a) Prove that sin {1 log a l } = a >, where a, b are real numbers not both zero.
a+ib a® + b*

(b) Solve the equation x° — 18x — 35 = 0, by Cardan’s method.

(c) Solve the equation 2x3 — x2 — 18x + 9 = 0 if two of the roots are equal in magnitude but opposite
in sign.
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Using Cauchy-Schwartz inequality, prove that

I 1 1 1
(a+b+c+d)y| —+—+—+— |>16,
a b ¢ d
where a. b, ¢, d are all positive real numbers (not all equal).
Solve the equation cos z = 2, where the solutions should be written in general form.

a. b, ¢ be positive real numbers, prove that

a b c 3
+ + > =, unless a = b = c.
b+c c¢+a a+b 2

Find the sum of 99th powers of the roots of the equation x” — 1 = 0.

Group - B
(Marks : 25)

3. Answer any fwo questions : 2V4x2

(a)

(b)
(c)
(d)

Suppose f : R — R be defined by f(x) = x? — 5x + 6. Prove that fis neither an injective mapping
nor a surjective mapping.

Find two integers u and v such that 54u + 24v = 30.

. T 2024
Find out the unit digit of ]

Examine whether the relation R, defined on the set Z by a R b if and only if

a—b<5,a, b e Zis an equivalence relation or not.

4. Answer any four questions :

(a)

(b)
(c)

(d)

(e)

(H)

Find ged of 315 and 4235 and find integers s and 7 such that ged (315, 4235) = 3155 + 4235¢.

5

Find the remainder when [1+ |2 +[3 +......... +|100 is divided by 40. 5
Find fo g and g o f, where f: R — R is defined by f(x) = [x| +x,x € Rand g: R > R is
defined by g(x) = |x| —x, x ¢ R. 5
Solve the system of linear congruences by Chinese remainder theorem

x =2 (mod 3)

x =3 (mod 5)

x =4 (mod 7) 5
(i) Find the value of ¢(2024).
(i) n> +n+ 41 is a prime number, for all n € N. Is it true? Justify your answer. 3+2

If 4 =12, 3, 4}, then find the number of relations on 4 which are both reflexive and symmetric.

J
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1 1
(g) Let 4A=R\ {*7}’ B=R\ {5 } where R denotes the set of all real. Let /: 4 — B be defined by
: x—-3
f(x)= a1 for all x € A. Does f~! exist? Justify your answer. 1+4
Group - C
(Marks : 25)

5. Answer any two questions : 25%2
(a) Verify whether the set of vectors {(1,5,2),(1,1,0),(0,0, 1)} is linearly independent or not in R3.
(b) Find a spanning set of the subset S of R3, where S = {(x.».2) € R3:2x+y—-2z=0}.

(c) If A is invertible and AB = 0, then prove that B = 0, where A, B both nxn (square) matrices.
. . 1 0). . .
(d) Find the value of A so that the matrix 4 = (1 kj is its own inverse.
6. Answer any four questions : S5x4
(a) Find the rank of the matrix by reducing it to row reduced Echelon form
01 -3 -1
1 0 1 1
31 0 2
11 2 0
(b) Determine the conditions for which the system x +y + z = l,x+2y—z=b,5x+Ty+az= b2
admits of (i) only one solution, (ii) no solution, (iii) many solutions.
(¢) Prove that (4 + B)A_1 (A-B) =4 - B)/f1 (4 + B) if A and B are square matrices and 4 is
invertible.
(d) If {a, B, v} is linearly independent set of vectors in space R”, then prove that {o +  + 7,
B+, v} is also a linearly independent set in R”.
(e) Find the dimension and basis of the solution space of the system of equations :
x-2y+z=0
x-2y—-z=20
(f) Transfer the system of equation 2x — 3y + 4z =3,3x + 2y —z = 4, 5x + 3y — z = 7 to a matrix
equation AX = B. Hence, solve the system by using the properties of matrix.
(g) Find a linearly independent subset T of the set S = {ay, Gy, 03, oyf, where ay = (1, 2, 1),

o, = (-3, =6, 3), o3 = 2,1,3),0,=(8,7,7) € R3 which spans the same space as S.



