2023

MATHEMATICS — GENERAL

Paper: DSE-A-1 and DSE-A-2

Candidates are required to give their answers in their own words as far as practicable.

Paper: DSE-A-1

(Particle Dynamics)

Full Marks: 65

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১। নিম্নলিখিত প্রশ্নগুলির উত্তর দাও ঃ

02×

- (ক) যদি v গতিবেগে সরলরেখা বরাবর গতিশীল কোনো কণার গতিবেগ $v^2=ax^2+b$ রাশিদ্বারা প্রদত্ত হয়, যেখানে x ওই সরলরেখার কোনো নির্দিষ্ট বিন্দু থেকে ওই কণাটির দূরত্ব এবং a, b ধ্রুবক, তবে কণাটির ত্বরণ সরলভেদে থাকবে নিম্নলিখিত কোনটির সঙ্গে?
 - $(a) 1/x^2$

(আ) 1/x

(**②**) x

- $(\overline{2})$ x^2
- (খ) যদি একটি বস্তুকণার ত্বনেণর অভিলম্ব উপাংশ এবং স্পর্শক উপাংশ সমান হয়, তবে গতিবেগ সমানুপাতিক হবে
 - (অ) ψ

(আ) e^Ψ

 $(\overline{z}) e^{2\psi}$

(ঈ) e^{-Ψ}

-এর সঙ্গে, যেখানে tan ψ = স্পর্শকের নতি।

- (গ) কোনো বস্তুর উপর ক্রিয়াশীল ঘাতের (Impulse) পরিমাপ হল
 - (অ) ঘাত = গতিশক্তির পরিবর্তন
 - (আ) ঘাত = ভরবেগের পরিবর্তন
 - (ই) ঘাত = ক্রিয়াশীল বল দ্বারা কার্যের পরিমাপ
 - (ঈ) উপরের কোনোটিই নয়।
- (ঘ) সরল দোলগতিতে চলমান বস্তুর দোলনের পূর্ণ সময়কাল
 - (আ) $T = \frac{\pi}{\sqrt{\mu}}$

(আ) $T = \frac{\pi}{2\sqrt{u}}$

 $(\overline{2}) \quad T = \frac{2\pi}{\sqrt{\mu}}$

 $(\overline{\mathfrak{P}})$ $T = \frac{\pi}{\sqrt{2\mu}}$

(প্রতীকগুলি প্রচলিত অর্থে ব্যবহৃত)

Please Turn Over

- (ঙ) যদি কোনো কণা $x = a \sin(\mu t + \varepsilon)$ নিয়ম মেনে সরলরেখা বরাবর গতিশীল হয়, তবে তার গতিবেগ v নিম্নলিখিত কোন সম্পর্কটিকে সিদ্ধ করবে ?
 - ($\nabla v^2 = \mu(a^2 x^2)$
- (আ) $v^2 = \mu^2(x^2 a^2)$
- $(\overline{2})$ $v^2 = \mu(x^2 a^2)$
- (\overline{r}) $v^2 = \mu^2(a^2 x^2)$

যেখানে α, μ এবং ε হল ধ্রুবক।

- (চ) একটি বস্তুকণার চলমান পথের বক্রের সমীকরণ $r=ae^{ heta},$ যার কৌণিক বেগ ধ্রুবক। তাহলে অরীয় ত্বরণের মান
 - (অ) r-এর সঙ্গে সমানুপাতিক
- (আ) θ-এর সঙ্গে সমানুপাতিক
- (ই) শুন্য নয় এমন ধ্রুবক
- (ঈ) শ্ন্য
- (ছ) $\frac{5}{16}$ পাউন্ড ভরবিশিষ্ট একটি ক্রিকেট বল 80 ফুট/সেকেন্ড গতিতে ধাবমান। বলটি একটি ব্যাটের আঘাতে 48 ফুট/সেকেন্ড গতিবেগে বিপরীত অভিমুখে ধাবিত হলে ব্যাটের অভিঘাত বল হবে
 - (অ) 10 পাউন্ডাল সেকেন্ড
- (আ) 20 পাউভাল সেকেভ
- (ই) 30 পাউভাল সেকেভ
- (ঈ) 40 পাউভাল সেকেভ
- (জ) একটি কণা মূলবিন্দু (O)-কে কেন্দ্র করে সম-কৌণিক বেগে সমতলে গতিমান, তাহলে ত্বরণের অভিলম্ব উপাংশের সমানুপাতিক হবে নিম্নলিখিত রাশিগুলির কোনটি?
 - (\triangledown) $\omega \frac{dr}{dt}$

- (আ) $2\omega \frac{dr}{dt}$
- $(\bar{z}) \frac{1}{2}\omega \frac{dr}{dt}$
- $(\overline{\aleph}) \quad \omega^2 \frac{dr}{dt}$
- (ঝ) এক অশ্বশক্তির পরিমাপ হবে
 - (অ) 746.3 watts (আনুমানিক)
- (আ) 750 watts (আনুমানিক)
- (ই) 740 watts (আনুমানিক)
- (ঈ) কোনোর্টিই নয়।
- (ঞ) কেপলার-এর সূত্রানুযায়ী T যদি পর্যায়কাল ও a যদি অর্ধ পরাক্ষ (semi-major axis) হয় তবে T^2 সমানুপাতিক হবে
 - (অ) a

(আ) a^2

 (\overline{z}) a^3

 $(\overline{\mathfrak{R}})$ a^4

-এর সঙ্গে।

২। *যে-কোনো একটি* প্রশ্নের উত্তর দাওঃ

(XX)

- কে) স্থিরাবস্থা থেকে একটি কণা সরলরেখা বরাবর গতিশীল এবং t সময়ে তার ত্বরণ হয় $b-kt^2$, যেখানে b এবং k হল ধনাত্মক প্রুবক। দেখাও যে কণাটির সর্বোচ্চ (maximum) গতিবেগ হয় $\frac{2}{3}\sqrt{\frac{b^3}{k}}$ ।
- (খ) কোনো কণা $r^4=a^4{\cos}4\theta$ পথে এমন একটি বলের অধীনে গতিশীল যা সর্বদাই কেন্দ্রাভিমুখী। বলের সূত্রটি নির্ণয় করো।

৩। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

- কে) m ভরবিশিষ্ট একটি কণা mn^2x আকর্ষক বলের অধীনে একটি সরলরেখায় গতিশীল এবং সরলরেখার উপরিস্থ একটি নির্দিষ্ট বিন্দুর দিকে অভিমুখী হয় যেখানে x হল ওই নির্দিষ্ট বিন্দু থেকে দূরত্ব, যদি কণাটি ওই নির্দিষ্ট বিন্দু থেকে প্রারম্ভিক a দূরত্ব থেকে V গতিবেগে বলের কেন্দ্রের অভিমুখে উৎক্ষিপ্ত হয় তবে প্রমাণ করো যে, কণাটি বলের কেন্দ্রে $\frac{1}{n} \tan^{-1} \left(\frac{na}{V} \right)$ সময় পরে পৌছাবে।
- (খ) সরল দোলন গতিসম্পন্ন একটি কণার কেন্দ্রবিন্দু O-এর সাপেক্ষে পর্যায়কাল (Period) T এবং এটি OP-র অভিমুখে P বিন্দুকে V গতিবেগে অতিক্রম করে। যদি কণাটি P বিন্দুতে ফিরে আসতে t সময় নেয়, তাহলে দেখাও যে $t = \frac{T}{\pi} \tan^{-1} \left[\frac{VT}{2\pi x} \right],$ যেখানে OP = x।
- (গ) m ভরবিশিষ্ট একটি কণা $m\mu\left(x+rac{a^4}{x^3}
 ight)$ আকর্ষক বলের অধীনে সরলরেখায় গতিশীল, যেখানে μ একটি ধ্রুবক। যদি মূলবিন্দু থেকে a দূরত্ব থেকে কণাটি স্থিরাবস্থা থেকে যাত্রা শুরু করে তাহলে মূলবিন্দুতে পৌঁছানোর সময় নির্ণয় করো।
- (ঘ) প্রমাণ করো যে, একটি সমতলে গতিশীল m_1 এবং m_2 ভরবিশিষ্ট দুটি কণার গতিশক্তি হয়

$$\frac{1}{2}(m_1+m_2)u^2+\frac{1}{2}\frac{m_1m_2}{m_1+m_2}v^2,$$

যেখানে u হল কণাদ্বয়ের ভরকেন্দ্রের গতিবেগ এবং v হল কোনো একটির অপরটির সাপেক্ষে আপেক্ষিক গতিবেগ।

50

- (ঙ) সমতলে একটি কেণা প্রতি একক ভরে F কেন্দ্রীয় আকর্ষক বলের প্রভাবে চলে, প্রচলিত অর্থে ব্যবহৃত প্রতীক ধরে দেখাও যে, গতিপথের অবকলজ সমীকরণ হল $\dfrac{h^2}{p^3}\dfrac{dp}{dr}=F$ ।
- (চ) (অ) apse এবং apsidal দূরত্বের সংজ্ঞা দাও।
 - (আ) m ভরবিশিষ্ট একটি বস্তুকণার ওপর $m\mu r^{-3}$ পরিমাণ কেন্দ্রাভিমুখী বল ক্রিয়া করে। কণাটি যদি C দূরত্বে অবস্থিত apse থেকে $\frac{3\sqrt{5\mu}}{5C}$ বেগে প্রক্ষিপ্ত হয়, তাহলে প্রমাণ করো যে কণাটির কক্ষপথের সমীকরণ হবে $r\cos\frac{2\theta}{3}=C$ ।

২+৮

- ছে) যদি v_1 এবং v_2 একটি গ্রহের রৈখিক বেগ হয় যখন সূর্য থেকে গ্রহটির দূরত্ব যথাক্রমে সর্বনিম্ন এবং সর্বোচ্চ, তবে প্রমাণ করো যে, $(1-e)v_1=(1+e)v_2$ যেখানে e হল গ্রহটির কক্ষপথের উপকেন্দ্রতা।
- (জ) (অ) কেপলারের গ্রহপথ সম্বন্ধিত সূত্রগুলি বিবৃত করো।
 - (আ) একটি বস্তুকণা $x^2 = 8y$ অধিবৃত্তাকার পথে এরূপ বলের অধীনে গতিশীল হয় যা সর্বদাই y অক্ষের সঙ্গে লম্ব। বলের সূত্রটি নির্ণয় করো এবং কণাটির গতিপথের যে–কোনো একটি বিন্দুতে তার গতিবেগ নির্ণয় করো। ৩+৭

Please Turn Over

No.

[English Version]

The figures in the margin indicate full marks.

1.	Answer the	follow	ing que	stions:			
					1.2	4	

(a) If the velocity v of a particle moving in a straight line is given by $v^2 = ax^2 + b$, where x is the distance travelled from a fixed point on the line and a, b are constants, the acceleration varies as

 1×10

(i) $1/x^2$

(ii) 1/x

(iii) x

(iv) x^2 .

(b) If the tangential and normal components of acceleration be equal, then the velocity is proportional

(i) ψ

(ii) e^{Ψ}

(iii) $e^{2\psi}$

(iv) $e^{-\psi}$,

where $\tan \psi = \text{gradient of the tangent.}$

(c) The impulse acting on a body is given by

(i) Impulse = Change in Kinetic energy

(ii) Impulse = Change in Momentum

(iii) Impulse = Work done by acting force

(iv) None of the above.

(d) The period of oscillation of simple harmonic motion is given by

(i) $T = \frac{\pi}{\sqrt{\mu}}$

(ii) $T = \frac{\pi}{2\sqrt{\mu}}$

(iii) $T = \frac{2\pi}{\sqrt{\mu}}$

(iv) $T = \frac{\pi}{\sqrt{2\mu}}$.

(Symbols have their usual meaning)

(e) If a particle moves in a straight line according to the rule $x = a \sin(\mu t + \epsilon)$, where a, μ and ϵ are constants, then the velocity ν is given by the relation

(i) $v^2 = \mu(a^2 - x^2)$

(ii) $v^2 = \mu^2(x^2 - a^2)$

(iii) $v^2 = \mu(x^2 - a^2)$

(iv) $v^2 = \mu^2(a^2 - x^2)$

(f) A particle describes a curve $r = ae^{\theta}$ with constant angular velocity. Then the radial acceleration is

(i) proprotional to r

(ii) proportional to θ

(iii) non-zero constant

(iv) zero.

- (g) A cricket ball weighing $\frac{5}{16}$ lb is moving with a velocity of 80 ft/second and is struck by a bat which causes it to travel in the opposite direction with a velocity of 48 ft/second. Then the impulsive force of the bat is
 - (i) 10 poundal sec.
- (ii) 20 poundal sec.
- (iii) 30 poundal sec.
- (iv) 40 poundal sec.
- (h) If a particle moves with constant angular velocity about a point O (origin) in its plane of motion, then the cross-radial acceleration is proportional to
 - (i) $\omega \frac{dr}{dt}$

(ii) $2\omega \frac{dr}{dt}$

(iii) $\frac{1}{2}\omega \frac{dr}{dt}$

- (iv) $\omega^2 \frac{dr}{dt}$.
- (i) 1 Horsepower =
 - (i) 746.3 watts (approx.)
- (ii) 750 watts (approx.)
- (iii) 740 watts (approx.)
- (iv) None of these.
- (j) According to Kepler's law, if T is the time period and a be the semi-major axis then T^2 varies as
 - (i) a

(ii) a^2

(iii) a³

- (iv) a^4 .
- 2. Answer any one question:

5×1 .

(a) A particle is moving in a straight line starts from rest and the acceleration at any time t is $b-kt^2$, where b and k are positive constants. Show that the maximum velocity attainable by the

particle is
$$\frac{2}{3}\sqrt{\frac{b^3}{k}}$$
.

- (b) A particle describes the path $r^4 = a^4 \cos 4\theta$ under a force which is always directed to the pole. Find the law of force.
- 3. Answer any five questions:
 - (a) A particle of mass m moves in a straight line under an attractive force mn^2x towards a fixed point on the line when at a distance x from it. If it be projected with a velocity V towards the centre of force from an initial distance a, then prove that it reaches the centre of force after a time

$$\frac{1}{n} \tan^{-1} \left(\frac{na}{V} \right).$$

10

11/1

(b) A particle is performing a simple harmonic motion of period T about a centre O and it passes through a point P with a velocity V in the direction OP. If the particle returns to P in time t, then

show that
$$t = \frac{T}{\pi} \tan^{-1} \left[\frac{VT}{2\pi x} \right]$$
, where $OP = x$.

- (c) A particle of mass m is acted on by a attractive force $m\mu\left(x+\frac{a^4}{x^3}\right)$, μ being constant, towards the origin. If it starts from rest at a distance a from origin, find the time it takes to arrive at the origin.
- (d) Prove that the kinetic energy of two particles of masses m_1 and m_2 moving in a plane is $\frac{1}{2}(m_1 + m_2)u^2 + \frac{1}{2}\frac{m_1m_2}{m_1 + m_2}v^2$, where u is the velocity at the centre of mass of the particles and v is the velocity of either of them relative to the other.
- (e) A particle describes a plane curve under the action of a central attractive force F per unit mass. Prove that in usual notation the differential equation to the path of the particle is $\frac{h^2}{p^3} \frac{dp}{dr} = F$.
- (f) (i) Define apse and apsidal distance.
 - (ii) A particle of mass m moves under a central attractive force $m\mu r^{-3}$ and is projected from an apse at a distance C with velocity $\frac{3\sqrt{5\mu}}{5C}$. Prove that the orbit of the particle is $r\cos\frac{2\theta}{3} = C$.
- (g) If v_1 and v_2 are the linear velocities of a planet when it is respectively at nearest and farthest from the Sun, then prove that $(1 e)v_1 = (1 + e)v_2$, where e is the eccentricity of the elliptic orbit of the planet.
- (h) (i) State the Kepler's laws of planetary motion.
 - (ii) A particle describes a parabola $x^2 = 8y$ under a force always perpendicular to y axis. Find the law of force and the velocity of the particle at any point of its orbit.

Paper: DSE-A-2

(Graph Theory)

Full Marks: 65

The figures in the margin indicate full marks.

1.	Choose	the	correct	a	lternatives	,
1.	CHOOSE	uic	COLLECT	a	ittiliatives	

1×10

- (a) The number of vertices necessary to construct a graph with exactly 8 edges and each vertex being of degree 2 is
 - (i) 6

(ii) 8

(iii) 10

- (iv) 12.
- (b) Let G_1 and G_2 be the only two components of a graph G with adjacency matrices $A(G_1)$ and $A(G_2)$ respectively. Then the adjacency matrix of G is

(i)
$$\left[\frac{A(G_1) \mid A(G_2)}{0 \mid 0} \right]$$
 (ii)
$$\left[\frac{A(G_1) \mid 0}{A(G_2) \mid 0} \right]$$

(ii)
$$\frac{A(G_1)}{A(G_2)} \stackrel{!}{\downarrow} \frac{0}{0}$$

(iii)
$$\left[\begin{array}{c|c} A(G_1) & 0 \\ \hline 0 & A(G_2) \end{array} \right]$$

(iii)
$$\left[\frac{A(G_1)}{0} \middle| \frac{0}{A(G_2)} \right]$$
 (iv)
$$\left[\frac{0}{A(G_2)} \middle| \frac{A(G_1)}{0} \right] .$$

[0 being the null matrix of suitable order]

- (c) In a cycle
 - (i) each vertex is visited exactly once
 - (ii) each edge is visited exactly once
 - (iii) both vertex and edge may be repeated
 - (iv) a path begins and ends at the same vertex.
- (d) Maximum number of edges in an acyclic undirected graph with n vertices is
 - (i) n

(ii)
$$n-1$$

(iii)
$$\frac{n(n-1)}{2}$$

(iv)
$$2^n$$
.

- (e) Which of the following is a property of a bipartite graph?
 - (i) It has a Eulerian circuit.
 - (ii) It has a Hamiltonian cycle.
 - (iii) It does not contain odd cycle.
 - (iv) It is always non-planar.

(f)

G is

- (i) planar and regular
- (ii) planar and non-regular
- (iii) non-planar and regular
- (iv) non-planar and non-regular.
- (g) The number of different spanning trees of the graph K_3 is
 - (i) 1

(ii) 2

(iii) 3

(iv) 4.

(h)

G is

- (i) Eulerian and Hamiltonian
- (ii) Eulerian and non-Hamiltonian
- (iii) Non-Eulerian and Hamiltonian
- (iv) Non-Eulerian and non-Hamiltonian.
- (i) Let I(G) be the incidence matrix of a graph G without loop. Then the number of 1's in each column of I(G) is
 - (i) 0

(ii) 1

(iii) 2

(iv) 3.

(j)

Number of directed walks of length 2 from V_4 to V_3 is

(i) 0

(ii) 1

(iii) 2

(iv) 3.

2. Answer any three questions:

- (a) (i) Define a path. Give an example of a walk which is not a path.
 - (ii) Find the connected components of the graph.

(1+2)+2

- (b) (i) Draw a graph with 5 vertices which is isomorphic to its complement. Justify your answer.
 - (ii) Determine whether the following graphs are isomorphic or not.

2+3

(c) (i) Determine whether the following graph is bipartite. Justify your answer.

(ii) Prove that a graph which contains a triangle cannot be bipartite.

3+2

- (d) (i) Find the number of pendant vertices in a binary tree with 31 vertices.
 - (ii) Prove or disprove that a minimally connected graph cannot have a circuit.
 - (iii) When a connected graph will be a tree?

2+2+1

Please Turn Over

Z(5th Sm.)-Mathematics-G/DSE-A-1 & DSE-A-2/CBCS

(e) (i) Examine the following graph is bipartite or not.

(ii) What is the least number of vertices in a simple connected graph with 10 edges?

(10)

(iii) In the graph

construct a path from V₁ to V₄ of length four.

2+2+1

3. Answer any four questions:

(a) Use Floyd-Warshall algorithm to find the length of the shortest path between any pair of vertices a, b, c, d, e and f of the following weighted directed graph.

(b) (i) Determine the minimal spanning tree and minimum weight corresponding to the following graph:

(ii) Prove that there is one and only one path between every pair of vertices in a tree T.

(c) (i) Prove that a complete bipartite graph $K_{m,n}$ is Hamiltonian iff m = n.

Check if the graph is planar or not.

(iii) Prove that K_5 is non-planar, but removal of one edge of K_5 makes a planar graph.

4+2+4

(d) (i) Construct the incidence matrix of the following diagraph:

(ii) Find all the spanning trees of the following graph:

5+5

- (e) (i) Show that a K-regular graph of order 2K-1 is Hamiltonian and verify this statement by finding a Hamiltonian cycle in a 4-regular graph of order 7.
 - (ii) Draw a graph that is Eulerian, but non-Hamiltonian and a graph that is Hamiltonian, but non-Eulerian.
 - (iii) Let G be a connected 4-regular planar graph of order 8. Find the number of faces and sum of the degrees of the faces of G.
- (f) (i) Construct a di-graph whose adjacency matrix is given by

Please Turn Over

(ii) Find the longest and shortest path found in the graph

(iii) Prove that the number of pendant vertices in a binary tree with n vertices is $\frac{n+1}{2}$.

3+3+4

- (g) (i) Prove that a connected graph G is a tree if and only if the number of vertices is one more than the number of edges in G.
 - (ii) Prove that a connected planar graph with n vertices and e edges has e n + 2 regions. (3+2)+5